Generic Standard on Printed Board Design

Developed by the IPC-2221 Task Group (D-31b) of the Rigid Printed Board Committee (D-30) of IPC

Supersedes:
IPC-2221 - February 1998

Users of this publication are encouraged to participate in the development of future revisions.

Contact:
IPC
2215 Sanders Road
Northbrook, Illinois
60062-6135
Tel 847 509.9700
Fax 847 509.9798
FOREWORD

This standard is intended to provide information on the generic requirements for organic printed board design. All aspects and details of the design requirements are addressed to the extent that they can be applied to the broad spectrum of those designs that use organic materials or organic materials in combination with inorganic materials (metal, glass, ceramic, etc.) to provide the structure for mounting and interconnecting electronic, electromechanical, and mechanical components. It is crucial that a decision pertaining to the choice of product types be made as early as possible. Once a component mounting and interconnecting technology has been selected the user should obtain the sectional document that provides the specific focus on the chosen technology.

It may be more effective to consider alternative printed board construction types for the product being designed. As an example the application of a rigid-flex printed wiring board may be more cost or performance effective than using multiple printed wiring boards, connectors and cables.

IPC’s documentation strategy is to provide distinct documents that focus on specific aspect of electronic packaging issues. In this regard document sets are used to provide the total information related to a particular electronic packaging topic. A document set is identified by a four digit number that ends in zero (0).

Included in the set is the generic information which is contained in the first document of the set and identified by the four digit set number. The generic standard is supplemented by one or many sectional documents each of which provide specific focus on one aspect of the topic or the technology selected. The user needs, as a minimum, the generic design document, the sectional of the chosen technology, and the engineering description of the final product.

As technology changes specific focus standards will be updated, or new focus standards added to the document set. The IPC invites input on the effectiveness of the documentation and encourages user response through completion of “Suggestions for Improvement” forms located at the end of each document.
Table of Contents

1 SCOPE ... 1
 1.1 Purpose .. 1
 1.2 Documentation Hierarchy .. 1
 1.3 Presentation ... 1
 1.4 Interpretation .. 1
 1.5 Definition of Terms ... 1
 1.6 Classification of Products 1
 1.6.1 Board Type .. 1
 1.6.2 Performance Classes .. 1
 1.6.3 Producibility Level .. 2
 1.7 Revision Level Changes 2

2 APPLICABLE DOCUMENTS .. 2
 2.1 IPC ... 2
 2.2 Joint Industry Standards 3
 2.3 Society of Automotive Engineers 3
 2.4 American Society for Testing and Materials 3
 2.5 Underwriters Labs ... 3
 2.6 IEEE .. 3
 2.7 ANSI ... 4

3 GENERAL REQUIREMENTS ... 4
 3.1 Information Hierarchy .. 6
 3.1.1 Order of Precedence .. 6
 3.2 Design Layout .. 6
 3.2.1 End-Product Requirements 6
 3.2.2 Density Evaluation ... 6
 3.3 Schematic/Logic Diagram 6
 3.4 Parts List .. 6
 3.5 Test Requirement Considerations 7
 3.5.1 Printed Board Assembly Testability 7
 3.5.2 Boundary Scan Testing 8
 3.5.3 Functional Test Concern for Printed Board Assemblies 8
 3.5.4 In-Circuit Test Concerns for Printed Board Assemblies 10
 3.5.5 Mechanical .. 12
 3.5.6 Electrical .. 12
 3.6 Layout Evaluation ... 13
 3.6.1 Board Layout Design 13
 3.6.2 Feasibility Density Evaluation 13
 3.7 Performance Requirements 15

4 MATERIALS ... 17
 4.1 Material Selection ... 17
 4.1.1 Material Selection for Structural Strength 17
 4.1.2 Material Selection for Electrical Properties 17
 4.1.3 Material Selection for Environmental Properties 17
 4.2 Dielectric Base Materials (Including Prepregs and Adhesives) 17
 4.2.1 Preimpregnated Bonding Layer (Prepreg) 17
 4.2.2 Adhesives .. 17
 4.2.3 Adhesive Films or Sheets 19
 4.2.4 Electrically Conductive Adhesives 19
 4.2.5 Thermally Conductive/Electrically Insulating Adhesives 19
 4.3 Laminate Materials ... 20
 4.3.1 Color Pigmentation 20
 4.3.2 Dielectric Thickness/Spacing 20
 4.4 Conductive Materials .. 20
 4.4.1 Electroless Copper Plating 20
 4.4.2 Electrolytic Copper Plating 20
 4.4.3 Gold Plating ... 20
 4.4.4 Nickel Plating .. 22
 4.4.5 Solder Coating .. 22
 4.4.6 Organic Protective Coatings 23
 4.4.7 Metallic Foil/Film 23
 4.4.8 Other Metallic Coatings for Edgeboard Contacts 23
 4.4.9 Solder Resist (Solder Mask) Coatings 24
 4.4.10 Electronic Component Materials 24
 4.5 Conformal Coatings 25
 4.5.1 Conformal Coatings 25
 4.5.2 Conformal Coatings 25
 4.5.3 Marking and Legends 25
 4.5.4 Insulating Adhesives 26
 4.5.5 ESD Considerations 26
 4.6 Structural Strength ... 27
 4.6.1 Bare Board Fabrication 27
 4.6.2 Board Type .. 27
 4.6.3 Board Geometries (Size and Shape) 27
 4.6.4 Board Geometries (Size and Shape) 27
 4.6.5 Bow and Twist ... 27
 4.6.6 Vibration Design .. 29

5 MECHANICAL/PHYSICAL PROPERTIES 26
 5.1 Fabrication Considerations 26
 5.1.1 Bare Board Fabrication 26
 5.2 Product/Board Configuration 26
 5.2.1 Board Type .. 26
 5.2.2 Board Size .. 26
 5.2.3 Board Geometries (Size and Shape) 26
 5.2.4 Bow and Twist ... 27
 5.2.5 Structural Strength 27
 5.2.6 Composite (Constraining-Core) Boards 27
 5.2.7 Vibration Design .. 29
11.4.2 Film Base Material ... 83
11.4.1 Artwork Master Files 83
11.4 Phototool Considerations 83
11.3 Deviation Requirements 83
11.2.4 Automated-Layout Techniques 81
11.2.3 Layout Notes .. 81
11.2.2 Accuracy and Scale .. 81
11.2.1 Viewing ... 81
11.2 Layout ... 81
11.1 Special Tooling ... 81

9 HOLEs/INTERCONNECTIONS .. 73
9.1 General Requirements for Lands with Holes 73
9.1.1 Land Requirements ... 73
9.1.2 Annular Ring Requirements 73
9.1.3 Thermal Relief in Conductor Planes 74
9.1.4 Lands for Flattened Round Leads 74
9.2 Holes ... 75
9.2.1 Unsupported Holes .. 75
9.2.2 Plated-Through Holes 75
9.2.3 Location ... 76
9.2.4 Hole Pattern Variation 76
9.2.5 Tolerances ... 76
9.2.6 Quantity .. 77
9.2.7 Spacing of Adjacent Holes 77
9.2.8 Aspect Ratio .. 77

10 GENERAL CIRCUIT FEATURE REQUIREMENTS 77
10.1 Conductor Characteristics 77
10.1.1 Conductor Width and Thickness 77
10.1.2 Electrical Clearance 78
10.1.3 Conductor Routing ... 78
10.1.4 Conductor Spacing .. 78
10.1.5 Plating Thieves ... 79
10.2 Land Characteristics .. 79
10.2.1 Manufacturing Allowances 79
10.2.2 Lands for Surface Mounting 79
10.2.3 Test Points .. 79
10.2.4 Orientation Symbols .. 79
10.3 Large Conductive Areas 79

11 DOCUMENTATION ... 81
11.1 Special Tooling ... 81
11.2 Layout ... 81
11.2.1 Viewing ... 81
11.2.2 Accuracy and Scale .. 81
11.2.3 Layout Notes .. 81
11.2.4 Automated-Layout Techniques 81
11.3 Deviation Requirements 83
11.4 Phototool Considerations 83
11.4.1 Artwork Master Files 83
11.4.2 Film Base Material ... 83

12 QUALITY ASSURANCE ... 83
12.1 Conformance Test Coupons 83
12.2 Material Quality Assurance 84
12.3 Conformance Evaluations 84
12.3.1 Coupon Quantity and Location 84
12.3.2 Coupon Identification 84
12.3.3 General Coupon Requirements 84
12.4 Individual Coupon Design 86
12.4.1 Coupon A and B or A/B (Plated Hole Evaluation, Thermal Stress and Rework Simulation) 86
12.4.2 Coupon C (Peel Strength) 87
12.4.3 Coupon D (Interconnection Resistance and Continuity) .. 87
12.4.4 Coupons E and H (Insulation Resistance) 88
12.4.5 Registration Coupon ... 89
12.4.6 Coupon G (Solder Resist Adhesion) 96
12.4.7 Coupon M (Surface Mount Solderability - Optional) .. 96
12.4.8 Coupon N (Peel Strength, Surface Mount Bond Strength - Optional for SMT) 96
12.4.9 Coupon S (Hole Solderability - Optional) 96
12.4.10 Coupon T ... 96
12.4.11 Process Control Test Coupon 96
12.4.12 Coupon X (Bending Flexibility and Endurance, Flexible Printed Wiring) 96

Appendix A Example of a Testability Design Checklist .. 103
Appendix B Conductor Current-Carrying Capacity and Conductor Thermal Management .. 104

Figure 3-1 Package Size and I/O Count 7
Figure 3-2 Test Land Free Area for Parts and Other Intrusions .. 11
Figure 3-3 Test Land Free Area for Tall Parts 11
Figure 3-4 Probing Test Lands 11
Figure 3-5 Example of Usable Area Calculation, mm [in] (Usable area determination includes clearance allowance for edge-board connector area, board guides, and board extractor.) 14
Figure 3-6 Printed Board Density Evaluation 16
Figure 5-1 Example of Printed Board Size Standardization, mm [in] 28
Figure 5-2 Typical Asymmetrical Constraining-Core Configuration 29
1 SCOPE
This standard establishes the generic requirements for the design of organic printed boards and other forms of component mounting or interconnecting structures. The organic materials may be homogeneous, reinforced, or used in combination with inorganic materials; the interconnections may be single, double, or multilayered.

1.1 Purpose The requirements contained herein are intended to establish design principles and recommendations that shall be used in conjunction with the detailed requirements of a specific interconnecting structure sectional standard (see 1.2) to produce detailed designs intended to mount and attach passive and active components. This standard is not intended for use as a performance specification for finished boards nor as an acceptance document for electronic assemblies. For acceptability requirements of electronic assemblies, see IPC/EIA-J-STD-001 and IPC-A-610.

The components may be through-hole, surface mount, fine pitch, ultra-fine pitch, array mounting or unpackaged bare die. The materials may be any combination able to perform the physical, thermal, environmental, and electronic function.

1.2 Documentation Hierarchy This standard identifies the generic physical design principles, and is supplemented by various sectional documents that provide details and sharper focus on specific aspects of printed board technology. Examples are:

IPC-2222 Rigid organic printed board structure design
IPC-2223 Flexible printed board structure design
IPC-2224 Organic, PC card format, printed board structure design
IPC-2225 Organic, MCM-L, printed board structure design
IPC-2226 High Density Interconnect (HDI) structure design
IPC-2227 Embedded Passive Devices printed board design (In Process)

The list is a partial summary and is not inherently a part of this generic standard. The documents are a part of the PCB Design Document Set which is identified as IPC-2220. The number IPC-2220 is for ordering purposes only and will include all documents which are a part of the set, whether released or in-process proposal format at the time the order is placed.

1.3 Presentation All dimensions and tolerances in this standard are expressed in hard SI (metric) units and parenthetical soft imperial (inch) units. Users of this and the corresponding performance and qualification specifications are expected to use metric dimensions.

1.4 Interpretation “Shall,” the imperative form of the verb, is used throughout this standard whenever a requirement is intended to express a provision that is mandatory. Deviation from a “shall” requirement may be considered if sufficient data is supplied to justify the exception.

The words “should” and “may” are used whenever it is necessary to express nonmandatory provisions. “Will” is used to express a declaration of purpose.

To assist the reader, the word “shall” is presented in bold characters.

1.5 Definition of Terms The definition of all terms used herein shall be as specified in IPC-T-50.

1.6 Classification of Products This standard recognizes that rigid printed boards and printed board assemblies are subject to classifications by intended end item use. Classification of producibility is related to complexity of the design and the precision required to produce the particular printed board or printed board assembly.

Any producibility level or producibility design characteristic may be applied to any end-product equipment category. Therefore, a high-reliability product designated as Class “3” (see 1.6.2), could require level “A” design complexity (preferred producibility) for many of the attributes of the printed board or printed board assembly (see 1.6.3).

1.6.1 Board Type This standard provides design information for different board types. Board types vary per technology and are thus classified in the design sectionals.

1.6.2 Performance Classes Three general end-product classes have been established to reflect progressive increases in sophistication, functional performance requirements and testing/inspection frequency. It should be recognized that there may be an overlap of equipment between classes. The printed board user has the responsibility to determine the class to which his product belongs. The contract shall specify the performance class required and indicate any exceptions to specific parameters, where appropriate.

Class 1 General Electronic Products Includes consumer products, some computer and computer peripherals, as well as general military hardware suitable for applications where cosmetic imperfections are not important and the